Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation

نویسندگان

  • Weizhu Bao
  • Yongyong Cai
چکیده

We analyze finite difference methods for the Gross-Pitaevskii equation with an angular momentum rotation term in two and three dimensions and obtain the optimal convergence rate, for the conservative Crank-Nicolson finite difference (CNFD) method and semi-implicit finite difference (SIFD) method, at the order of O(h2 + τ2) in the l2-norm and discrete H1-norm with time step τ and mesh size h. Besides the standard techniques of the energy method, the key technique in the analysis for the SIFD method is to use the mathematical induction, and resp., for the CNFD method is to obtain a priori bound of the numerical solution in the l∞-norm by using the inverse inequality and the l2-norm error estimate. In addition, for the SIFD method, we also derive error bounds on the errors between the mass and energy in the discretized level and their corresponding continuous counterparts, respectively, which are at the same order of the convergence rate as that of the numerical solution itself. Finally, numerical results are reported to confirm our error estimates of the numerical methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations

In this paper, we begin with the nonlinear Schrödinger/Gross-Pitaevskii equation (NLSE/GPE) for modeling Bose-Einstein condensation (BEC) and nonlinear optics as well as other applications, and discuss their dynamical properties ranging from time reversible, time transverse invariant, mass and energy conservation, dispersion relation to soliton solutions. Then, we review and compare different n...

متن کامل

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

Mathematical Theory and Numerical Methods for Bose-einstein Condensation

In this paper, we mainly review recent results on mathematical theory and numerical methods for Bose-Einstein condensation (BEC), based on the Gross-Pitaevskii equation (GPE). Starting from the simplest case with one-component BEC of the weakly interacting bosons, we study the reduction of GPE to lower dimensions, the ground states of BEC including the existence and uniqueness as well as nonexi...

متن کامل

Global well-posedness for the Gross-Pitaevskii equa- tion with an angular momentum rotational term in three dimensions

In this paper, we establish the global well-posedness of the Cauchy problem for the Gross-Pitaevskii equation with an angular momentum rotational term in which the angular velocity is equal to the isotropic trapping frequency in the space R .

متن کامل

Ground, Symmetric and Central Vortex States in Rotating Bose-einstein Condensates

We study ground, symmetric and central vortex states, as well as their energy and chemical potential diagrams, in rotating Bose-Einstein condensates (BEC) analytically and numerically. We start from the three-dimensional (3D) Gross-Pitaevskii equation (GPE) with an angular momentum rotation term, scale it to obtain a four-parameter model, reduce it to a 2D GPE in the limiting regime of strong a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2013